二叉搜索树的定义
二叉搜索树,也称有序二叉树,排序二叉树,是指一棵空树或者具有下列性质的二叉树:
若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
任意节点的左、右子树也分别为二叉查找树。
没有键值相等的节点。
二叉搜索数中序遍历为有序数组
一、查找二叉搜索树中的某个元素
在二叉搜索树b中查找x的过程为:
- 若b是空树,则搜索失败,否则:
- 若x等于b的根节点的数据域之值,则查找成功;否则:
- 若x小于b的根节点的数据域之值,则搜索左子树;否则:
- 查找右子树。
二、从有序数组构造一个二叉搜索树
三、往二叉搜索树中插入元素
向一个二叉搜索树b中插入一个节点s的算法,过程为:
- 若b是空树,则将s所指结点作为根节点插入,否则:
- 若s->data等于b的根节点的数据域之值,则返回,否则:
- 若s->data小于b的根节点的数据域之值,则把s所指节点插入到左子树中,否则:
- 把s所指节点插入到右子树中。(新插入节点总是叶子节点)
四、二叉搜索树的删除
二叉搜索树的结点删除比插入较为复杂,总体来说,结点的删除可归结为三种情况:
- 如果结点z没有孩子节点,那么只需简单地将其删除,并修改父节点,用NULL来替换z;
- 如果结点z只有一个孩子,那么将这个孩子节点提升到z的位置,并修改z的父节点,用z的孩子替换z;
- 如果结点z有2个孩子,那么查找z的后继y,此外后继一定在z的右子树中,然后让y替换z。
代码实现
二叉搜索树结构:
//the struct of BST
//K: the type of key
//V: the type of value
//K and V need overload operators < and > and ==
template<class K, class V>
struct BSTreeNode
{
BSTreeNode* lchild_; //left child;
BSTreeNode* rchild_; //right child;
K key_; //key
V value_; //value
BSTreeNode(const K& key, const V& value) //init
:lchild_(NULL)
,rchild_(NULL)
,key_(key)
,value_(value)
{}
};
二叉搜索数查找:
//BST Find
Node* Find(const K& key)
{
return Find_(root_, key);
}
Node* Find_(Node* root, const K& key)
{
if (root == NULL)
{
return NULL;
}
if (root->key_ > key) //find in leftchild
{
return Find_(root->lchild_, key);
}
else if (root->key_ < key)//find in rightchild
{
return Find_(root->rchild_, key);
}
else
{
return root;
}
}
二叉搜索数插入:
//BST Insert
//Find the node and Insert
bool Insert(const K& key, const V& value)
{
return Insert_(root_, key, value);
}
bool Insert_(Node*& root, const K& key, const V& value)
{
if (root == NULL)
{
root = new Node(key, value);
return true;
}
if (root->key_ > key)
{
return Insert_(root->lchild_, key, value);
}
else if(root->key_ < key)
{
return Insert_(root->rchild_, key, value);
}
else
{
return false;
}
}
二叉搜索树删除:
//BST remove
bool Remove(const K& key)
{
return Remove_(root_, key);
}
bool Remove_(Node*& root, const K& key)
{
//There is no such node
if (root == NULL)
{
return false;
}
//only one node
if (root->lchild_ == NULL&&root->rchild_ == NULL)
{
if (root->key_ == key)
{
delete root;
root = NULL;
return true;
}
else
{
return false;
}
}
if (root->key_ > key)
{
Remove_(root->lchild_, key);
}
else if (root->key_ < key)
{
Remove_(root->rchild_, key);
}
else
{
Node* del = NULL;
if (root->lchild_ == NULL) //just has rightchild
{
del = root;
root = root->rchild_;
delete del;
del = NULL;
return true;
}
else if (root->rchild_ == NULL) //just has leftchild
{
del = root;
root = root->lchild_;
delete del;
del = NULL;
return true;
}
else
{
Node* RightFirst = root->rchild_;
//find the first In order node
while (RightFirst->lchild_)
{
RightFirst = RightFirst->lchild_;
}
//swap RightFirst node with cur node
swap(root->key_, RightFirst->key_);
swap(root->value_, RightFirst->value_);
Remove_(root->rchild_, key);
return true;
}
}
}
完整代码:
#include<bits/stdc++.h>
using namespace std;
//the struct of BST
//K: the type of key
//V: the type of value
//K and V need overload operators < and > and ==
template<class K, class V>
struct BSTreeNode
{
BSTreeNode* lchild_; //left child;
BSTreeNode* rchild_; //right child;
K key_; //key
V value_; //value
BSTreeNode(const K& key, const V& value) //init
:lchild_(NULL)
,rchild_(NULL)
,key_(key)
,value_(value)
{}
};
template<class K,class V>
class BSTree
{
typedef BSTreeNode<K, V> Node;
public:
BSTree()
:root_(NULL)
{}
//BST Find
Node* Find(const K& key)
{
return Find_(root_, key);
}
Node* Find_(Node* root, const K& key)
{
if (root == NULL)
{
return NULL;
}
if (root->key_ > key) //find in leftchild
{
return Find_(root->lchild_, key);
}
else if (root->key_ < key)//find in rightchild
{
return Find_(root->rchild_, key);
}
else
{
return root;
}
}
//BST Insert
//Find the node and Insert
bool Insert(const K& key, const V& value)
{
return Insert_(root_, key, value);
}
bool Insert_(Node*& root, const K& key, const V& value)
{
if (root == NULL)
{
root = new Node(key, value);
return true;
}
if (root->key_ > key)
{
return Insert_(root->lchild_, key, value);
}
else if(root->key_ < key)
{
return Insert_(root->rchild_, key, value);
}
else
{
return false;
}
}
//BST remove
bool Remove(const K& key)
{
return Remove_(root_, key);
}
bool Remove_(Node*& root, const K& key)
{
//There is no such node
if (root == NULL)
{
return false;
}
//only one node
if (root->lchild_ == NULL&&root->rchild_ == NULL)
{
if (root->key_ == key)
{
delete root;
root = NULL;
return true;
}
else
{
return false;
}
}
if (root->key_ > key)
{
Remove_(root->lchild_, key);
}
else if (root->key_ < key)
{
Remove_(root->rchild_, key);
}
else
{
Node* del = NULL;
if (root->lchild_ == NULL) //just has rightchild
{
del = root;
root = root->rchild_;
delete del;
del = NULL;
return true;
}
else if (root->rchild_ == NULL) //just has leftchild
{
del = root;
root = root->lchild_;
delete del;
del = NULL;
return true;
}
else
{
Node* RightFirst = root->rchild_;
//find the first In order node
while (RightFirst->lchild_)
{
RightFirst = RightFirst->lchild_;
}
//swap RightFirst node with cur node
swap(root->key_, RightFirst->key_);
swap(root->value_, RightFirst->value_);
Remove_(root->rchild_, key);
return true;
}
}
}
//BST print In Order
void Output()
{
Output_(root_);
cout << endl;
}
void Output_(Node* root)
{
if (root == NULL)
{
return;
}
Output_(root->lchild_);
cout << root->key_ << " ";
Output_(root->rchild_);
}
Node * self()
{
return root_;
}
private:
Node* root_;
};
void Test()
{
BSTree<int, int> s;
//测试插入
s.Insert(5, 1);
s.Insert(4, 1);
s.Insert(3, 1);
s.Insert(6, 1);
s.Insert(1, 1);
s.Insert(2, 1);
s.Insert(0, 1);
s.Insert(9, 1);
s.Insert(8, 1);
s.Insert(7, 1);
//二叉搜索树按中序输出是有序的
s.Output();
//测试查找
cout << s.Find(6)->key_ << endl;
//测试删除
s.Remove(4);
s.Remove(6);
s.Remove(3);
s.Remove(1);
s.Remove(2);
//再次打印删除后的结果
s.Output();
}
int main()
{
Test();
return 0;
}