LT 电平触发 高电平触发
EPOLLIN 事件 数据可读
内核中的socket接收缓冲区 为空 低电平 不会触发
内核中的socket接收缓冲区 不为空 高电平 会触发
EPOLLOUT事件 数据可写
内核中的socket发送缓冲区不满 高电平
内核中的socket发送缓冲区 满 低电平
ET 边沿触发 转换的时候触发
由低电平 -> 高电平 才会 触发
高电平 -> 低电平 触发
下面代码是LT和ET模式的区别
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/epoll.h>
#include <pthread.h>
#define MAX_EVENT_NUMBER 1024
#define BUFFER_SIZE 10
int setnonblocking( int fd )
{
int old_option = fcntl( fd, F_GETFL );
int new_option = old_option | O_NONBLOCK;
fcntl( fd, F_SETFL, new_option );
return old_option;
}
void addfd( int epollfd, int fd, bool enable_et )
{
epoll_event event;
event.data.fd = fd;
event.events = EPOLLIN;
if( enable_et )
{
event.events |= EPOLLET;
}
epoll_ctl( epollfd, EPOLL_CTL_ADD, fd, &event );
setnonblocking( fd );
}
void lt( epoll_event* events, int number, int epollfd, int listenfd )
{
char buf[ BUFFER_SIZE ];
for ( int i = 0; i < number; i++ )
{
int sockfd = events[i].data.fd;
if ( sockfd == listenfd )
{
struct sockaddr_in client_address;
socklen_t client_addrlength = sizeof( client_address );
int connfd = accept( listenfd, ( struct sockaddr* )&client_address, &client_addrlength );
addfd( epollfd, connfd, false );
}
else if ( events[i].events & EPOLLIN )
{
printf( "event trigger once\n" );
memset( buf, '\0', BUFFER_SIZE );
int ret = recv( sockfd, buf, BUFFER_SIZE-1, 0 );
if( ret <= 0 )
{
close( sockfd );
continue;
}
printf( "get %d bytes of content: %s\n", ret, buf );
}
else
{
printf( "something else happened \n" );
}
}
}
void et( epoll_event* events, int number, int epollfd, int listenfd )
{
char buf[ BUFFER_SIZE ];
for ( int i = 0; i < number; i++ )
{
int sockfd = events[i].data.fd;
if ( sockfd == listenfd )
{
struct sockaddr_in client_address;
socklen_t client_addrlength = sizeof( client_address );
int connfd = accept( listenfd, ( struct sockaddr* )&client_address, &client_addrlength );
addfd( epollfd, connfd, true );
}
else if ( events[i].events & EPOLLIN )
{
printf( "event trigger once\n" );
while( 1 )
{
memset( buf, '\0', BUFFER_SIZE );
int ret = recv( sockfd, buf, BUFFER_SIZE-1, 0 );
if( ret < 0 )
{
if( ( errno == EAGAIN ) || ( errno == EWOULDBLOCK ) )
{
printf( "read later\n" );
break;
}
close( sockfd );
break;
}
else if( ret == 0 )
{
close( sockfd );
}
else
{
printf( "get %d bytes of content: %s\n", ret, buf );
}
}
}
else
{
printf( "something else happened \n" );
}
}
}
int main( int argc, char* argv[] )
{
if( argc <= 2 )
{
printf( "usage: %s ip_address port_number\n", basename( argv[0] ) );
return 1;
}
const char* ip = argv[1];
int port = atoi( argv[2] );
int ret = 0;
struct sockaddr_in address;
bzero( &address, sizeof( address ) );
address.sin_family = AF_INET;
inet_pton( AF_INET, ip, &address.sin_addr );
address.sin_port = htons( port );
int listenfd = socket( PF_INET, SOCK_STREAM, 0 );
assert( listenfd >= 0 );
ret = bind( listenfd, ( struct sockaddr* )&address, sizeof( address ) );
assert( ret != -1 );
ret = listen( listenfd, 5 );
assert( ret != -1 );
epoll_event events[ MAX_EVENT_NUMBER ];
int epollfd = epoll_create( 5 );
assert( epollfd != -1 );
addfd( epollfd, listenfd, true );
while( 1 )
{
int ret = epoll_wait( epollfd, events, MAX_EVENT_NUMBER, -1 );
if ( ret < 0 )
{
printf( "epoll failure\n" );
break;
}
lt( events, ret, epollfd, listenfd );
//et( events, ret, epollfd, listenfd );
}
close( listenfd );
return 0;
}