鲁宾逊先生和多多都很开心,因为花生正是他们的最爱。在告示牌背后,路边真的有一块花生田,花生植株整齐地排列成矩形网格(如图1)。有经验的多多一眼就能看出,每棵花生植株下的花生有多少。为了训练多多的算术,鲁宾逊先生说:“你先找出花生最多的植株,去采摘它的花生;然后再找出剩下的植株里花生最多的,去采摘它的花生;依此类推,不过你一定要在我限定的时间内回到路边。”
我们假定多多在每个单位时间内,可以做下列四件事情中的一件:
1) 从路边跳到最靠近路边(即第一行)的某棵花生植株;
2) 从一棵植株跳到前后左右与之相邻的另一棵植株;
3) 采摘一棵植株下的花生;
4) 从最靠近路边(即第一行)的某棵花生植株跳回路边。
现在给定一块花生田的大小和花生的分布,请问在限定时间内,多多最多可以采到多少个花生?注意可能只有部分植株下面长有花生,假设这些植株下的花生个数各不相同。
例如在图2所示的花生田里,只有位于(2, 5), (3, 7), (4, 2), (5, 4)的植株下长有花生,个数分别为13, 7, 15, 9。沿着图示的路线,多多在21个单位时间内,最多可以采到37个花生。
Input输入的第一行包括一个整数T,表示数据组数
每组输入的第一行包括三个整数,M, N和K,用空格隔开;表示花生田的大小为M * N(1 <= M, N <= 50),多多采花生的限定时间为K(0 <= K <= 1000)个单位时间。接下来的M行,每行包括N个非负整数,也用空格隔开;第i + 1行的第j个整数Pij(0 <= Pij <= 500)表示花生田里植株(i, j)下花生的数目,0表示该植株下没有花生。 Output输出包括T行,每一行只包含一个整数,即在限定时间内,多多最多可以采到花生的个数。 Sample Input
6 7 21 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 7 0 15 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0Sample Output
37
直接模拟,,每次行走判断是否能回到路边
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(int i=m;i<n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
const int inf_int = 2e9;
const long long inf_ll = 2e18;
#define inf_add 0x3f3f3f3f
#define mod 1000000007
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define pi acos(-1.0)
#define pii pair<int,int>
#define Lson L, mid, rt<<1
#define Rson mid+1, R, rt<<1|1
const int maxn=5e2+10;
using namespace std;
typedef vector<int> vi ;
typedef long long ll;
typedef unsigned long long ull;
inline int read(){int ra,fh;char rx;rx=getchar(),ra=0,fh=1;
while((rx<'0'||rx>'9')&&rx!='-')rx=getchar();if(rx=='-')
fh=-1,rx=getchar();while(rx>='0'&&rx<='9')ra*=10,ra+=rx-48,
rx=getchar();return ra*fh;}
//#pragma comment(linker, "/STACK:102400000,102400000")
ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}
typedef struct node{
int x;
int y;
int val;
}NODE;
bool cmp(NODE a,NODE b)
{
return a.val>b.val;
}
vector<NODE> p;
int a[100][100];
int T;
int n,m,k;
int main()
{
cin >> T;
while(T--)
{
NODE t;
int curx =-1;
int cury =-1;
memset(a,0,sizeof(a));
cin>>n>>m>>k;
p.clear();
rep(i,1,n+1)
{
rep(j,1,m+1)
{
t.x = i;
t.y = j;
cin>>a[i][j];
t.val = a[i][j];
p.push_back(t);
}
}
sort(p.begin(),p.end(),cmp);
curx = 0;
cury = p[0].y;
int re =0;
while(k>0)
{
if(p[0].val==0)
break;
int dis = abs(curx-p[0].x)+abs(cury-p[0].y);
if(k-dis-1<p[0].x)
break;
k-=(dis+1);
re += p[0].val;
curx = p[0].x;
cury = p[0].y;
if(p.size()==1)
break;
p.erase(p.begin());
}
cout<<re<<endl;
}
return 0;
}