文章目录
观察者模式
模板模式
模板方法模式在一个方法中定义一个算法骨架,并将某些步骤推迟到子类中实现。模板方法模式可以让子类在不改变算法整体结构的情况下,重新定义算法中的某些步骤。
原理很简单,代码实如下所示。templateMethod()函数定义为final,是为了避免子类重写它。method1()和method2()定义为abstract,是为了强迫子类去实现。
public abstract class AbstractClass {
// 1. 有些方法又严禁子类实现
public final void templateMethod() {
//...
method1();
//...
method2();
//...
}
// 2. 有些逻辑父类做不了主,就交给子类,强迫子类去实现。
protected abstract void method1();
//3. 父类实现一些公用的逻辑
private void parentFun() {
System.out.println("parent function");
System.out.println("step 1 ");
System.out.println("step 2 ");
System.out.println("step 3 ");
//4. 有些逻辑再直接交给子类去做,父类直接定义逻辑模板
method1();
}
protected abstract void method2();
// 5. 有些逻辑父类可以做一部分,最做的就做,但是最好是由子类实现。
protected void setUp() throws Exception {
// 父类设置
}
}
public class ConcreteClass1 extends AbstractClass {
@Override
protected void method1() {
//...
}
@Override
protected void method2() {
//...
}
}
public class ConcreteClass2 extends AbstractClass {
@Override
protected void method1() {
//...
}
@Override
protected void method2() {
//...
}
}
// 在这里使用
AbstractClass demo = ConcreteClass1();
demo.templateMethod();
模板模式有两大作用:复用和扩展。其中,复用指的是,所有的子类可以复用父类中提供的模板方法的代码。扩展指的是,框架通过模板模式提供功能扩展点,让框架用户可以在不修改框架源码的情况下,基于扩展点定制化框架的功能。
模板模式与回调
策略模式
定义一族算法类,将每个算法分别封装起来,让它们可以互相替换。策略模式可以使算法的变化独立于使用它们的客户端(这里的客户端代指使用算法的代码)。
我们知道,工厂模式是解耦对象的创建和使用,观察者模式是解耦观察者和被观察者。策略模式跟两者类似,也能起到解耦的作用,不过,它解耦的是策略的定义、创建、使用这三部分。接下来,我就详细讲讲一个完整的策略模式应该包含的这三个部分。
定义
public interface Strategy {
void algorithmInterface();
}
public class ConcreteStrategyA implements Strategy {
@Override
public void algorithmInterface() {
//具体的算法...
}
}
public class ConcreteStrategyB implements Strategy {
@Override
public void algorithmInterface() {
//具体的算法...
}
}
创建
public class StrategyFactory {
private static final Map strategies = new HashMap<>();
static {
strategies.put("A", new ConcreteStrategyA());
strategies.put("B", new ConcreteStrategyB());
}
public static Strategy getStrategy(String type) {
if (type == null || type.isEmpty()) {
throw new IllegalArgumentException("type should not be empty.");
}
return strategies.get(type);
}
}
使用
// 策略接口:EvictionStrategy
// 策略类:LruEvictionStrategy、FifoEvictionStrategy、LfuEvictionStrategy...
// 策略工厂:EvictionStrategyFactory
public class UserCache {
private Map cacheData = new HashMap<>();
private EvictionStrategy eviction;
public UserCache(EvictionStrategy eviction) {
this.eviction = eviction;
}
//...
}
// 运行时动态确定,根据配置文件的配置决定使用哪种策略
public class Application {
public static void main(String[] args) throws Exception {
EvictionStrategy evictionStrategy = null;
Properties props = new Properties();
props.load(new FileInputStream("./config.properties"));
String type = props.getProperty("eviction_type");
evictionStrategy = EvictionStrategyFactory.getEvictionStrategy(type);
UserCache userCache = new UserCache(evictionStrategy);
//...
}
}
// 非运行时动态确定,在代码中指定使用哪种策略
public class Application {
public static void main(String[] args) {
//...
EvictionStrategy evictionStrategy = new LruEvictionStrategy();
UserCache userCache = new UserCache(evictionStrategy);
//...
}
}
如何避免掉冗长的if-else|switch分支判断代码?
//原代码
public class OrderService {
public double discount(Order order) {
double discount = 0.0;
OrderType type = order.getType();
if (type.equals(OrderType.NORMAL)) {
// 普通订单
//...省略折扣计算算法代码
} else if (type.equals(OrderType.GROUPON)) {
// 团购订单
//...省略折扣计算算法代码
} else if (type.equals(OrderType.PROMOTION)) {
// 促销订单
//...省略折扣计算算法代码
}
return discount;
}
}
重构后:
// 策略的定义
public interface DiscountStrategy {
double calDiscount(Order order);
}
// 省略NormalDiscountStrategy、GrouponDiscountStrategy、PromotionDiscountStrategy类代码...
// 策略的创建
public class DiscountStrategyFactory {
private static final Map strategies = new HashMap<>();
static {
strategies.put(OrderType.NORMAL, new NormalDiscountStrategy());
strategies.put(OrderType.GROUPON, new GrouponDiscountStrategy());
strategies.put(OrderType.PROMOTION, new PromotionDiscountStrategy());
}
public static DiscountStrategy getDiscountStrategy(OrderType type) {
return strategies.get(type);
}
}
// 策略的使用
public class OrderService {
public double discount(Order order) {
OrderType type = order.getType();
DiscountStrategy discountStrategy = DiscountStrategyFactory.getDiscountStrategy(type);
return discountStrategy.calDiscount(order);
}
}
但是,如果业务场景需要每次都创建不同的策略对象,我们就要用另外一种工厂类的实现方式了。具体的代码如下所示:
public class DiscountStrategyFactory {
public static DiscountStrategy getDiscountStrategy(OrderType type) {
if (type == null) {
throw new IllegalArgumentException("Type should not be null.");
}
if (type.equals(OrderType.NORMAL)) {
return new NormalDiscountStrategy();
} else if (type.equals(OrderType.GROUPON)) {
return new GrouponDiscountStrategy();
} else if (type.equals(OrderType.PROMOTION)) {
return new PromotionDiscountStrategy();
}
return null;
}
}
这种实现方式相当于把原来的if-else分支逻辑,从OrderService类中转移到了工厂类中,实际上并没有真正将它移除。
职责链模式
模板模式、策略模式,今天,我们来学习职责链模式。这三种模式具有相同的作用:复用和扩展
,在实际的项目开发中比较常用,特别是框架开发中,我们可以利用它们来提供框架的扩展点,能够让框架的使用者在不修改框架源码的情况下,基于扩展点定制化框架的功能。
定义
将请求的发送和接收解耦,让多个接收对象都有机会处理这个请求。将这些接收对象串成一条链,并沿着这条链传递这个请求,直到链上的某个接收对象能够处理它为止。
在职责链模式中,多个处理器(也就是刚刚定义中说的“接收对象”)依次处理同一个请求。一个请求先经过A处理器处理,然后再把请求传递给B处理器,B处理器处理完后再传递给C处理器,以此类推,形成一个链条。链条上的每个处理器各自承担各自的处理职责,所以叫作职责链模式。
实现
第一种
public abstract class Handler {
protected Handler successor = null;
public void setSuccessor(Handler successor) {
this.successor = successor;
}
public abstract void handle();
}
public class HandlerA extends Handler {
@Override
public void handle() {
boolean handled = false;
//真实业务逻辑
if (!handled && successor != null) {
successor.handle();
}
}
}
public class HandlerB extends Handler {
@Override
public void handle() {
boolean handled = false;
//真实业务逻辑
//注意下面的这个设置其实是与业务无关的,所以完全可以提取出来,写为一个模板模式!!!
if (!handled && successor != null) {
successor.handle();
}
}
}
public class HandlerChain {
private Handler head = null;
private Handler tail = null;
public void addHandler(Handler handler) {
handler.setSuccessor(null);
if (head == null) {
head = handler;
tail = handler;
return;
}
tail.setSuccessor(handler);
tail = handler;
}
public void handle() {
if (head != null) {
head.handle();
}
}
}
// 使用举例
public class Application {
public static void main(String[] args) {
HandlerChain chain = new HandlerChain();
//有顺序的处理器链条
chain.addHandler(new HandlerA());
chain.addHandler(new HandlerB());
chain.handle();
}
}
重构为模板模式后:
public abstract class Handler {
protected Handler successor = null;
public void setSuccessor(Handler successor) {
this.successor = successor;
}
public final void handle() {
boolean handled = doHandle();
if (successor != null && !handled) {
successor.handle();
}
}
protected abstract boolean doHandle();
}
public class HandlerA extends Handler {
@Override
protected boolean doHandle() {
boolean handled = false;
//...
return handled;
}
}
public class HandlerB extends Handler {
@Override
protected boolean doHandle() {
boolean handled = false;
//...
return handled;
}
}
// HandlerChain和Application代码不变
第二种(其实就是使用数组实现而已)
public interface IHandler {
boolean handle();
}
public class HandlerA implements IHandler {
@Override
public boolean handle() {
boolean handled = false;
//...
return handled;
}
}
public class HandlerB implements IHandler {
@Override
public boolean handle() {
boolean handled = false;
//...
return handled;
}
}
public class HandlerChain {
private List handlers = new ArrayList<>();
public void addHandler(IHandler handler) {
this.handlers.add(handler);
}
public void handle() {
for (IHandler handler : handlers) {
boolean handled = handler.handle();
if (handled) {
break;
}
}
}
}
// 使用举例
public class Application {
public static void main(String[] args) {
HandlerChain chain = new HandlerChain();
chain.addHandler(new HandlerA());
chain.addHandler(new HandlerB());
chain.handle();
}
}
应用场景
- 符合开闭原则
- 将大块代码逻辑拆分成函数,将大类拆分成小类,是应对代码复杂性的常用方法
迭代器模式
用来遍历集合对象。这里说的“集合对象”也可以叫“容器”“聚合对象”,实际上就是包含一组对象的对象,比如数组、链表、树、图、跳表。迭代器模式将集合对象的遍历操作从集合类中拆分出来,放到迭代器类中,让两者的职责更加单一。
迭代器是用来遍历容器的,所以,一个完整的迭代器模式一般会涉及容器和容器迭代器两部分内容。为了达到基于接口而非实现编程的目的,容器又包含容器接口、容器实现类,迭代器又包含迭代器接口、迭代器实现类。
实现
// 接口定义
public interface Iterator {
boolean hasNext();
void next();
E currentItem();
}
public class ArrayIterator implements Iterator {
private int cursor;
private ArrayList arrayList;
// 返回一个迭代器类
public Iterator iterator() {
return new ArrayIterator(this);
}
@Override
public boolean hasNext() {
return cursor != arrayList.size(); //注意这里,cursor在指向最后一个元素的时候,hasNext()仍旧返回true。
}
@Override
public void next() {
cursor++;
}
@Override
public E currentItem() {
if (cursor >= arrayList.size()) {
throw new NoSuchElementException();
}
return arrayList.get(cursor);
}
}
public class Demo {
public static void main(String[] args) {
ArrayList names = new ArrayList<>();
names.add("xzg");
names.add("wang");
names.add("zheng");
Iterator iterator = names.iterator();
while (iterator.hasNext()) {
System.out.println(iterator.currentItem());
iterator.next();
}
}
}
总结下来就三句话:迭代器中需要定义hasNext()、currentItem()、next()三个最基本的方法。待遍历的容器对象通过依赖注入传递到迭代器类中。容器通过iterator()方法来创建迭代器。
使用场景和优势
- 对于类似数组和链表这样的数据结构,遍历方式比较简单,直接使用for循环来遍历就足够了。但是,对于复杂的数据结构(比如树、图)来说,有各种复杂的遍历方式。比如,树有前中后序、按层遍历,图有深度优先、广度优先遍历等等。如果由客户端代码来实现这些遍历算法,势必增加开发成本,而且容易写错。如果将这部分遍历的逻辑写到容器类中,也会导致容器类代码的复杂性。
前面也多次提到,应对复杂性的方法就是拆分。我们可以将遍历操作拆分到迭代器类中。比如,针对图的遍历,我们就可以定义DFSIterator、BFSIterator两个迭代器类,让它们分别来
实现深度优先遍历和广度优先遍历。 - 创建多个不同的迭代器,同时对同一个容器进行遍历而互不影响(这个好像创建多个for循环遍历也能做到,当然其底层就是根绝迭代器实现的嘛)
- 容器和迭代器都提供了抽象的接口,方便我们在开发的时候,基于接口而非具体的实现编程。当需要切换新的遍历算法的时候,比如,从前往后遍历链表切换成从后往前遍历链表,客户端代码只需要将迭代器类从LinkedIterator切换为ReversedLinkedIterator即可,其他代码都不需要修改。除此之外,添加新的遍历算法,我们只需要扩展新的迭代器类,也更符合开闭原则。
- 不支持增删元素,如果增删元素之后就会让遍历报错,遍历操作会直接抛出运行时异常。