题目链接:[kuangbin带你飞]专题七 线段树 A - 敌兵布阵
前言
最近看到有些大牛代码里有句
ios_base::sync_with_stdio(false);
不免好奇,百度了下,才知道是可以加快io操作时间。
cin,cout速度慢,是因为先把要输出的东西存入缓冲区,再输出,导致效率降低,而这段ios_base::sync_with_stdio(false)可以来打消iostream的输入输出缓存,可以节省许多时间,使效率与scanf与printf相差无几。
那么,以后就可以抛去超时的顾虑,优雅的用cin,cout啦!
另外,本人用这道题做了测试,将结果分享给大家。
超时的是纯cin,cout
468s的是cin,cout加上ios_base::sync_with_stdio(false);
358s的是纯scanf,printf。
题意
Time Limit:1000MS Memory Limit:32768KB 64bit IO
Description
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:”你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:”我知错了。。。”但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
思路
赤裸裸的一维区间求和,可以用线段树或者树状数组,我用的是线段树。
代码
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <vector>
using namespace std;
const int N = 50009;
const int MAX = N<<2;
int Sum[MAX];
void build(int l, int r, int k)
{
if(l == r)
{
cin>>Sum[k];
return;
}
int mid = (l+r)>>1;
build(l, mid, k<<1);
build(mid+1, r, k<<1 | 1);
Sum[k] = Sum[k<<1] + Sum[k<<1 | 1];
}
void update(int l, int r, int pos, int d, int k)
{
if(l == r)
{
Sum[k] += d;
return;
}
int mid = (l+r)>>1;
if(pos<=mid)
update(l, mid, pos, d, k<<1);
else
update(mid+1, r, pos, d, k<<1 | 1);
Sum[k] = Sum[k<<1] + Sum[k<<1 | 1];
}
int find(int l, int r, int tol, int tor, int k)
{
if(tol <= l && tor >= r)
return Sum[k];
int mid = (l+r)>>1;
int ans = 0;
if(tol <= mid)
ans += find(l, mid, tol, tor, k<<1);
if(tor > mid)
ans += find(mid+1, r, tol, tor, k<<1 | 1);
return ans;
}
int main()
{
ios_base::sync_with_stdio(false);
int T;
cin>>T;
for(int t=1; t<=T; t++)
{
cout<<"Case "<<t<<":"<<endl;
int n;
cin>>n;
build(1, n, 1);
char str[10];
int i, j;
while(cin>>str)
{
if(str[0] == 'E')
break;
cin>>i>>j;
if(str[0] == 'A')
update(1, n, i, j, 1);
else if(str[0] == 'S')
update(1, n, i, -j, 1);
else if(str[0] == 'Q')
cout<<find(1, n, i, j, 1)<<endl;
}
}
return 0;
}