K - K.Bro Sorting
HDU - 5122
Matt’s friend K.Bro is an ACMer.
Yesterday, K.Bro learnt an algorithm: Bubble sort. Bubble sort will compare each pair of adjacent items and swap them if they are in the wrong order. The process repeats until no swap is needed.
Today, K.Bro comes up with a new algorithm and names it K.Bro Sorting.
There are many rounds in K.Bro Sorting. For each round, K.Bro chooses a number, and keeps swapping it with its next number while the next number is less than it. For example, if the sequence is “1 4 3 2 5”, and K.Bro chooses “4”, he will get “1 3 2 4 5” after this round. K.Bro Sorting is similar to Bubble sort, but it’s a randomized algorithm because K.Bro will choose a random number at the beginning of each round. K.Bro wants to know that, for a given sequence, how many rounds are needed to sort this sequence in the best situation. In other words, you should answer the minimal number of rounds needed to sort the sequence into ascending order. To simplify the problem, K.Bro promises that the sequence is a permutation of 1, 2, . . . , N .
InputThe first line contains only one integer T (T ≤ 200), which indicates the number of test cases. For each test case, the first line contains an integer N (1 ≤ N ≤ 10
6).
Yesterday, K.Bro learnt an algorithm: Bubble sort. Bubble sort will compare each pair of adjacent items and swap them if they are in the wrong order. The process repeats until no swap is needed.
Today, K.Bro comes up with a new algorithm and names it K.Bro Sorting.
There are many rounds in K.Bro Sorting. For each round, K.Bro chooses a number, and keeps swapping it with its next number while the next number is less than it. For example, if the sequence is “1 4 3 2 5”, and K.Bro chooses “4”, he will get “1 3 2 4 5” after this round. K.Bro Sorting is similar to Bubble sort, but it’s a randomized algorithm because K.Bro will choose a random number at the beginning of each round. K.Bro wants to know that, for a given sequence, how many rounds are needed to sort this sequence in the best situation. In other words, you should answer the minimal number of rounds needed to sort the sequence into ascending order. To simplify the problem, K.Bro promises that the sequence is a permutation of 1, 2, . . . , N .
The second line contains N integers a i (1 ≤ a i ≤ N ), denoting the sequence K.Bro gives you.
The sum of N in all test cases would not exceed 3 × 10 6. OutputFor each test case, output a single line “Case #x: y”, where x is the case number (starting from 1), y is the minimal number of rounds needed to sort the sequence. Sample Input
2 5 5 4 3 2 1 5 5 1 2 3 4Sample Output
Case #1: 4
Case #2: 1
Hint
In the second sample, we choose “5” so that after the first round, sequence becomes “1 2 3 4 5”, and the algorithm completes.
从后开始遍历,判断是否有比最小值大的数。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <iomanip>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(int i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
const int inf_int = 2e9;
const long long inf_ll = 2e18;
#define inf_add 0x3f3f3f3f
#define MOD 1000000007
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define pi acos(-1.0)
#define pii pair<int,int>
#define Lson L, mid, rt<<1
#define Rson mid+1, R, rt<<1|1
const int maxn=5e2+10;
using namespace std;
typedef vector<int> vi;
typedef long long ll;
typedef unsigned long long ull;
inline int read(){int ra,fh;char rx;rx=getchar(),ra=0,fh=1;
while((rx<'0'||rx>'9')&&rx!='-')rx=getchar();if(rx=='-')
fh=-1,rx=getchar();while(rx>='0'&&rx<='9')ra*=10,ra+=rx-48,
rx=getchar();return ra*fh;}
//#pragma comment(linker, "/STACK:102400000,102400000")
ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}
int dir[4][2]={{-1,0},{1,0},{0,-1},{0,1}};
struct node
{
int t;
int x;
bool operator<(const node a) const
{
return t<a.t;
}
};
int a[1000005];
node nt;
int T,n;
int main()
{
// freopen("data.txt","r",stdin);
scanf("%d",&T);
int re = 0;
for(int cas = 1 ; cas <= T ; cas++)
{
re = 0;
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
int m = a[n-1];
for(int i=n-1;i>=0;i--)
{
if(a[i]>m)
{
re++;
}
else
{
m = min(m,a[i]);
}
}
printf("Case #%d: %d\n",cas,re);
}
return 0;
}