题目描述 Description
有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如 N=4,4 堆纸牌数分别为:
① 9 ② 8 ③ 17 ④ 6
移动3次可达到目的:
从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。
输入描述 Input Description
第一行N(N 堆纸牌,1 <= N <= 100)
第二行A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)
输出描述 Output Description
输出至屏幕。格式为:
所有堆均达到相等时的最少移动次数。‘
样例输入 Sample Input
4
9 8 17 6
样例输出 Sample Output
3
数据范围及提示 Data Size & Hint
e
#include <stdio.h>
int main(void) {
int N;
int a[10001];
int i;
int sum;
int ave;
int sub;
int count;
scanf("%d",&N);
sum = 0;
count = 0;
for(i = 0;i < N;i++) {
scanf("%d",&a[i]);
sum += a[i];
}
ave = sum / N;
for(i = 0;i < N - 1;i++) {
if(a[i] > ave) {
sub = a[i] - ave;
a[i+1] = a[i+1] + sub;
count++;
} else if (a[i] < ave) {
sub = ave - a[i];
a[i+1] = a[i+1] - sub;
count++;
}
}
printf("%d\n",count);
return 0;
}